Neither Helix in the Coiled Coil Region of the Axle of F1-ATPase Plays a Significant Role in Torque Production

نویسندگان

  • Mohammad Delawar Hossain
  • Shou Furuike
  • Yasushi Maki
  • Kengo Adachi
  • Toshiharu Suzuki
  • Ayako Kohori
  • Hiroyasu Itoh
  • Masasuke Yoshida
  • Kazuhiko Kinosita
چکیده

F(1)-ATPase is an ATP-driven rotary molecular motor in which the central gamma-subunit rotates inside the cylinder made of alpha(3)beta(3) subunits. The amino and carboxy termini of the gamma-subunit form the axle, an alpha-helical coiled coil that deeply penetrates the stator cylinder. We previously truncated the axle step by step, starting with the longer carboxy terminus and then cutting both termini at the same levels, resulting in a slower yet considerably powerful rotation. Here we examine the role of each helix by truncating only the carboxy terminus by 25-40 amino-acid residues. Longer truncation impaired the stability of the motor complex severely: 40 deletions failed to yield rotating the complex. Up to 36 deletions, however, the mutants produced an apparent torque at nearly half of the wild-type torque, independent of truncation length. Time-averaged rotary speeds were low because of load-dependent stumbling at 120 degrees intervals, even with saturating ATP. Comparison with our previous work indicates that half the normal torque is produced at the orifice of the stator. The very tip of the carboxy terminus adds the other half, whereas neither helix in the middle of the axle contributes much to torque generation and the rapid progress of catalysis. None of the residues of the entire axle played a specific decisive role in rotation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Torque of Rotary F-ATPase Can Unfold Subunit Gamma If Rotor and Stator Are Cross-Linked

During ATP hydrolysis by F(1)-ATPase subunit γ rotates in a hydrophobic bearing, formed by the N-terminal ends of the stator subunits (αβ)(3). If the penultimate residue at the α-helical C-terminal end of subunit γ is artificially cross-linked (via an engineered disulfide bridge) with the bearing, the rotary function of F(1) persists. This observation has been tentatively interpreted by the unf...

متن کامل

Functional importance of the coiled-coil of the Ebola virus glycoprotein.

Ebola virus contains a single glycoprotein (GP) that is responsible for receptor binding and membrane fusion and is proteolytically cleaved into disulfide-linked GP1 and GP2 subunits. The GP2 subunit possesses a coiled-coil motif, which plays an important role in the oligomerization and fusion activity of other viral GPs. To determine the functional significance of the coiled-coil motif of GP2,...

متن کامل

F1 rotary motor of ATP synthase is driven by the torsionally-asymmetric drive shaft

F1F0 ATP synthase (ATPase) either facilitates the synthesis of ATP in a process driven by the proton moving force (pmf), or uses the energy from ATP hydrolysis to pump protons against the concentration gradient across the membrane. ATPase is composed of two rotary motors, F0 and F1, which compete for control of their shared γ -shaft. We present a self-consistent physical model of F1 motor as a ...

متن کامل

O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation

Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...

متن کامل

Alphavirus nucleocapsid protein contains a putative coiled coil alpha-helix important for core assembly.

The alphavirus nucleocapsid core is formed through the energetic contributions of multiple noncovalent interactions mediated by the capsid protein. This protein consists of a poorly conserved N-terminal region of unknown function and a C-terminal conserved autoprotease domain with a major role in virion formation. In this study, an 18-amino-acid conserved region, predicted to fold into an alpha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical Journal

دوره 95  شماره 

صفحات  -

تاریخ انتشار 2008